
Estimating the Evaluation Cost of Regular PathQueries on
Large Graphs

Van-Quyet Nguyen
Dept. of Electronics and Computer Engineering

Chonnam National University
quyetict@utehy.edu.vn

Kyungbaek Kim
Dept. of Electronics and Computer Engineering

Chonnam National University
kyungbaekim@jnu.ac.kr

ABSTRACT

Regular path queries (RPQs) are widely used on a graph whose an-
swer is a set of tuples of nodes connected by paths corresponding
to a given regular expression. Traditional approaches for evaluating
RPQs are restricted in the explosion of graph size and/or highly
complex query (e.g., nested query). Consequently, evaluating an
RPQ on a large graph often takes high cost, causing substantial
memory spaces and long response time. Recently, cost-based op-
timizations of RPQs have been proved to be effective when they
are applied to large graphs. However, these techniques could not
guarantee the minimum evaluation cost all the time. Therefore,
estimating the evaluation cost of RPQs is an important topic which
opens the way to cost-based graph query processing.

In this paper, we present a novel approach for estimating the eval-
uation cost of RPQs on large graphs. Our method exploits graph
schema to make a so-called USCM (Unit-Subquery Cost Matrix),
which presents the evaluation cost of the unit-subqueries (i.e. every
smallest possible subquery). We propose some cost functions based
on USCM to estimate the evaluation cost of an RPQ by decomposing
it into a set of unit-subqueries. We also present a case study which
applies our proposed idea for parallel RPQs evaluation. Experimen-
tal results show that our estimation method obtains high accuracy
approximately 87% in average. Moreover, two comparisons with
automata-based and rare label based approaches demonstrate that
USCM-based approach outperforms traditional ones.

CCS CONCEPTS

• Computing methodologies→ Search methodologies; Paral-
lel computing methodologies;

KEYWORDS

Regular Path Queries, RPQ Cost Estimation, Graph Querying

ACM Reference Format:

Van-Quyet Nguyen and Kyungbaek Kim. 2017. Estimating the Evaluation
Cost of Regular Path Queries on Large Graphs. In SoICT ’17: Eighth Interna-
tional Symposium on Information and Communication Technology, December
7–8, 2017, Nha Trang City, Viet Nam. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3155133.3155160

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5328-1/17/12. . . $15.00
https://doi.org/10.1145/3155133.3155160

1 INTRODUCTION

A regular path query (RPQ) is introduced as a part of a query lan-
guage for graph databases, which are represented as graphs whose
nodes are objects and edge labels specify relationships between
them [19]. The answer of an RPQ is a set of tuples of nodes which
are connected with edge labels in some ways by the paths spec-
ified by a regular language [1, 4–6, 18]. RPQs have been utilized
in many applications such as friends recommendations in social
networks [14] and detecting signal pathways in protein interaction
networks [21]. In such systems, databases could store extremely
large graphs in practice (i.e. hundreds of millions nodes and edges
on Twitter social network [27], billions nodes/edges on Friendster
social network [28]). Hence, evaluating an RPQ on such graphs
takes high cost causing substantial memory spaces and long re-
sponse time. Therefore, estimating the evaluation cost of RPQs
opens the way to improve the performance of query evaluation. For
instance, to improve response time for evaluating an RPQ, we can
split original RPQ into smaller subqueries, evaluate them parallelly
and combine partial answers. In this case, estimating the cost of
each subquery is one of the key points to choose the split labels
which help separating original RPQ in an efficient way.

RPQs evaluation on graph database has been studied intensively
in the literature [2, 11, 12, 16, 18, 23, 26]. A common approach
is to use automata [11]. However, the drawback of the automata-
based approach is that the states of automaton are mapped onto the
graph, which could cause long response time due to a large graph.
To address this issue, there have been several studies focusing
on optimizing the evaluation cost of RPQs. The first technique
is rewriting regular path queries [4, 9]. In which, a given regular
expression is converted into another one that helps reducing search
space by searching only a portion of the data. But, this approach
still has a limitation when dealing with rewriting highly complex
RPQs (e.g. nested RPQs with modifier recursion).

In recent years, cost-based optimizations of RPQs have been
proved to be effective when they are applied to large graphs. In
[15] and an extension of that work [16], the authors proposed an
approach for answering RPQs using ideas from cost-based query op-
timization. Their works use a cost-based technique for determining
which labels in the graph are considered to be rare. By using rare
labels as start-, end-, and way-points during traversal, this approach
could decrease the search space. However, the major drawback of
this approach is that the algorithm depends on the presence of rare
labels and the number of rare labels in the graph and query. In the
case of poor rare labels or long queries, this approach still takes
a high cost and can reach to the complexity O(n2), where n is the
number of edges of the graph. We will compare our estimation

92

SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam Van-Quyet et al.

cost based approach to rare label based approach in case of parallel
RPQs evaluation (for more details, see Section 4).

An area, where the efficiency of evaluation RPQs is important, is
querying on distributed graphs. A survey about the state of the art
of evaluating queries on distributed graphs is presented in [17]. Dan
Suciu presented a distributed query evaluation approach on semi-
structured data [22]. Their algorithm takes a bounded complexity
O(n2) for the amount of data transfers via the network, where n
is the total of cross-edges. Wenfei Fan et al. in [8] proposed effi-
cient algorithms for answering three classes of regular reachability
queries on distributed graphs based on a technique named partial
evaluation. However, it faces a communication bottleneck problem
when assembling all distributed partial query results. This problem
is addressed in [20, 25]; therein, a large amount of redundant data
is detected and removed before assembling at the coordinate site.

Despite many studies have focused on RPQs evaluation, to the
best of our knowledge, there has been very little research studying
on estimating evaluation cost of RPQs and its effectiveness. Silke
et al. in [24] provided functions to estimate the sizes of result sets
and the response times to evaluate reachability and path queries.
Davoust et al. in [7] presented estimation cost functions to provide
strategies for evaluating RPQs on distributed graphs. However,
this work mainly focuses on estimating the amount of data to be
transferred via the network during evaluating an RPQ. None of
these works above provides estimation cost functions relying on
operators in RPQs and connectivity of labels. In this paper, we
propose a novel approach for estimating the evaluation cost of
RPQs on large graphs. Our method exploits graph schema to make
a Unit-Subquery Cost Matrix (called USCM) which presents the
evaluation cost of the unit-subqueries (i.e. every smallest possible
subquery). We provide cost functions based on USCM to estimate
the evaluation cost of an RPQ by decomposing the original query
into a set of unit-subqueries.

Our idea can also be used for variations of the general RPQ
problem, such as optimal grouping of RPQs into some groups with
balanced evaluation cost, or query planning on graph-based system.
Especially, estimation cost plays an important role in parallel query
processing. Based on the estimated evaluation cost, we can choose
split labels which minimize the graph searching cost of the split
subqueries, so we can reduce more response time for evaluating
RPQs on large graphs.

Our work makes the following contributions.

• We define a Unit-Subquery Cost Matrix according to graph
schema. A unit-subquery can be a part of an RPQ, so we can
use USCM to estimate the evaluation cost of RPQ.

• According to USCM, we propose a novel approach for esti-
mating evaluation cost of a given RPQ. Three main operators
in an RPQ including concatenation, alternation, and bounded
Kleene operator, are considered to estimate the cost. More-
over, we also discuss the estimation of highly complex RPQs.

• We present a case study which shows our idea can be applied
for parallel evaluation of RPQs to reduce the searching cost.

• We conduct extensive experiments which show that our
estimation method obtains high accuracy approximately 87%
in average. Moreover, two comparisons with automata-based
and rare label based approaches demonstrate experimentally

that our approach outperforms traditional ones in the aspect
of parallel RPQs evaluation.

The rest of this paper is organized as follows. In Section 2, we
present terms and definitions related to regular path queries. In
Section 3, we describe our method of estimating the evaluation
cost of RPQs: a Unit-Subquery Cost Matrix (USCM) and estimat-
ing the evaluation cost of RPQs by using USCM. We conduct the
experimental evaluation using both real-life and synthetic graphs
in Section 4. Section 5 concludes with a summary and shows our
future work.

2 PRELIMINARIES

2.1 Graph Data and Regular Path Queries

We consider an edge-labeled directed graph G = (V , E, Σ), where V
is a finite set of nodes, Σ is a finite set of labels, and E ⊆ V × Σ ×V
is a finite set of edges. An edge (v , a, u) denotes a directed edge
from node v to u labeled with a ∈ Σ.

A path ρ between nodes v0 and vk in G is a sequence

ρ = v0a0v1a1v2...vk−1ak−1vk

such that each (vi ,ai ,vi+1), for 0 ≤ i < k , is an edge. The sequence
of labels of a path ρ, denoted L(ρ), is the string a0a1...ak−1 ∈ Σ∗,
where Σ∗ is a set of all possible strings over the set of labels Σ. We
also define the empty path as (v , ε , v) for each v ∈ V ; the label of
such a path is the empty string ϵ .

An RPQ with a regular expression R is a query of the form Q(R)

= v
L(R)
−→ u, where L(R) ∈ Σ∗ is a regular language. So, a path ρ

satisfies Q(R) on the graph G iff L(ρ) ∈ L(R), then ρ is an answer of
Q(R). Here, R is a regular expression over Σ,

R = ϵ | a | R ◦ R | R ∪ R | R[i, j],

where ϵ is an empty value; a is a label in Σ; R ◦ R, R ∪ R, and
R[i, j] denote concatenation, alternation, and Kleene operator with
bounded recursion [i, j], where i < j and i, j ∈ N, respectively.

Note that, in the syntax of regular expression we use a bounded
Kleene operator which bounds recursion with [i, j] instead of an
unbounded Kleene operator (e.g., *, +). This is motivated by the
following three observations. Firstly, the bounded Kleene operator
is supported by graph query languages in practice, such as Neo4j’s
Cypher1. Secondly, bounded recursion on regular path queries
evaluation has been studied in the literature [10]. Finally, it is not
difficult to find that for any graph G, there exists a natural number
n such that for every RPQ, Q(R), there is a possible case that R∗ =
R[0,n]. Similarly, other modifiers (+ and ?) can be represented as
follows: R+ = R[1,n] and R? = R[0,1]. While evaluating an RPQ with
unbounded recursion on a large graph is a non-trivial task.

Example 1: Figure 1(a) illustrates a graph G of social network,
where each node denotes a person with his/her name and each edge
represents the relationship between two people, in which an edge
is labeled by an element in a set of labels

Σ = {supervisor , colleaдue, f riend,married,knows}.

In this graph, a regular path query Q(R) with

1http://neo4j.com/docs/developer-manual/current/cypher/syntax/patterns/

93

Estimating the Evaluation Cost of Regular PathQueries on Large Graphs SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam

• R = suppervisor◦(colleaдue∪f riend) finds all paths between any
supervisor (s) and colleaдues or f riends of his/her employees. In
this case, the result includes three paths as follows.

Bill
supervisor
−−−−−−−−−−→ Dan

colleaдue
−−−−−−−−−→ Jun

Bill
supervisor
−−−−−−−−−−→ Dan

f r iend
−−−−−−→ Tea

Job
supervisor
−−−−−−−−−−→ Ben

f r iend
−−−−−−→ Son

• R = supervisor ◦ f riend[1,2] ◦married finds all paths from any
supervisor (s) to the people who married with f riend or f riend
of f riend of his/her employees. In this case, the result includes
two paths as follows.

Bill
supervisor
−−−−−−−−−−→ Dan

f r iend
−−−−−−→ Tea

f r iend
−−−−−−→ Ken

marr ied−−−−−−−−→ Lee

Job
supervisor
−−−−−−−−−−→ Ben

f r iend
−−−−−−→ Son

marr ied−−−−−−−−→ Ann

2.2 Evaluation of an RPQ

Informally, the evaluation of an RPQ, Q(R), is to find all paths
between pairs of nodes in a graph G, such that the path from one
node to the other matches a given regular expression R. There are
two types of RPQs which have been considered in the literature.
In which, multi-source queries start a search at every node in the
graph, and single-source queries start a search at a single given
start node. In this paper, we consider estimating the evaluation cost
of the multi-source queries. For better understanding about the
estimation cost, we will describe the basic of RPQ evaluation using
automata-based technique.

Query Automaton. To process an RPQ, a regular expression can
be converted into an automaton then used to matching paths. We
use a deterministic finite automata (DFA) to represent query where
the definition DFA as in [13]. That is, an RPQ, Q(R), is represented
by an automaton AR which is a 5-tuple as the following:

AR = {Q, Σ, μ,q0, F },
whereQ is a finite set of states, Σ is a finite set of labels (or symbols),
μ is the transition function, that is, μ: Q × Σ → Q , q0 is an initial
(or start) state and q0 ∈ Q , F is a set of terminal states and F ⊂ Q .

Query Evaluation. A well-known method for query evaluation
[13] based on automata consists of the steps as follows:

• Build a finite automaton AR associated with the regular
expression R. The initial state ofAR is q0, the accepted states
are {qt }, where qt ∈ F .

• Consider graph G as an automaton AG with nodes as states,
edges as transitions and compute the cross-product of the
automata AP = AR ×AG .

• Apply any graph search algorithm such as breadth-first or
depth-first to find all pairs of nodes related by the regular
path: searchAP from all initial states (q0,vi) to find all reach-
able accepted states (qt ,vj). All pairs of nodes (vi ,vj) are
answers to the RPQ.

The evaluation cost of the algorithm above consists of the cost
of building the query automaton, plus the cost of building and
searching the product automaton. In practice, the searching cost is
the determinant of evaluation cost, especially in the case of handling
large graphs. We define the evaluation cost of an RPQ as the number
of traversed edges for searching paths corresponding to the RPQ.

Figure 1: (a) An example of a social network as a directed

edge-labeled graph; (b) A simple regular path query as an

automaton.

Example 2: Suppose that we have a graph G as described in
Example 1. We consider to the evaluation of an RPQ, Q(R), with

R = supervisor ◦ (colleaдue ∪ f riend) ◦married .

First, we convert Q(R) into finite automata AR as shown in Figure
1(b). Next, we look up the start nodes from graph G. To be able to
efficiently gather start nodes from the graph, we assume that an
index of the edge label also encodes their incoming and outgoing
nodes. This index gives us the list of start nodes of the label in the
graph. In this case, we have two start nodes {Bill , Job}. Starting
from node Bill , there is a node, Dan, matching with a state in AR

(q1). From Dan, we find the nodes for next searching. Here, four
edges are traversed and two nodes, {Jun,Tea}, are considered as
the next starting nodes. Then, the searching process continues from
these nodes, there are four more edges traversed and only one node,
Tim, is matched with the final state q4. Thus, for searching from
Bill , the searching cost is nine. Similarly, starting from Job, we can
found only one path satisfying Q(R),

Job
supervisor
−−−−−−−−−−→ Ben

f r iend
−−−−−−→ Son

marr ied−−−−−−−−→ Ann,

with the searching cost is five. As the result, we have the evaluation
cost of Q(R) in this case is fourteen. We are going to compare this
the result with our estimation cost in the next section.

3 ESTIMATING THE EVALUATION COST OF
RPQS

In this section, we present a novel approach for estimating the
evaluation cost of RPQs. We first define a Unit-Subquery Cost
Matrix (USCM). We then present how to estimate the evaluation
cost by using USCM.

94

SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam Van-Quyet et al.

Table 1: An example of Unit-Subquery Cost Matrix

Label:Count supervisor colleague friend married knows Total

supervisor:2 0 1 2 0 3 6

colleague:1 0 0 0 1 1 2

friend:4 0 0 2 3 3 8

married:4 1 0 0 0 2 3

knows:8 1 0 0 2 4 7

3.1 Unit-Subquery Cost Matrix (USCM)

Intuitively, an RPQ is composed of multiple small subqueries with
a few operators such as concatenation, alternation, and bounded
Kleene. Then, we can define a unit-subquery as the smallest sub-
query which is concatenated by two labels from Σ; the start la-
bel and the end label. For example, in the graph G of Figure 1,
a subquery Q(supervisor ◦ colleaдue) is a unit-subquery, where
supervisor is the start label and colleaдue is the end label. In prac-
tice, any query which is defined as in Section 2.2 can be split
into multiple unit-subqueries even if the query which contains
the Kleene operators with bounded recursion. For example, the sub-
queryQ((colleaдue ∪ f riend) ◦married) can be split into two unit-
subqueriesQ(colleaдue ◦married) andQ(f riend ◦married); mean-
while, the query Q(supervisor ◦ (colleaдue ◦ f riend)[1,2]) is com-
posed of six unit-subqueries including Q(supervisor ◦ colleaдue),
Q(supervisor◦f riend),Q(colleaдue◦f riend),Q(colleaдue◦colleaдue),
Q(f riend ◦ colleaдue), and Q(f riend ◦ f riend).

The cost of a unit-subquery is defined as the number of edges
with the end label, which is connected to the edges with the start
label. For example, in the graphG of Figure 1, the cost of a subquery
Q(supervisor ◦ colleaдue) is one because there is only one edge
(Dan, colleaдue , Jun) labeled with colleaдue , which is connected to
uni-directional edges labeled with supervisor .

With the definition of the cost of unit-subqueries, we can gen-
erate a Unit-Subquery Cost Matrix (USCM) which represents the
cost of all possible unit-subqueries from Σ. An example of USCM
is shown in Table 1. The size of USCM is n by n + 1 where n is
the number of distinct labels in Σ. A cell (i, j) of USCM, except the
last column where j is n + 1, represents the cost of a unit-subquery,
Q(aiaj), whose start label is ai ∈ Σ and end label is aj . For clarity
of presentation, we drop the explicit use of the concatenation, and
we use the symbol | for alternation operator in terms and equations,
only keep the symbols ◦ and ∪ in the examples (from now on). In
the last column, a cell (i, j) represents the cost of a unit-subquery
Q(ai_), that is, the summation of the costs of unit-subqueries whose
start label is ai . Additionally, USCM contains the number of edges
with a given label (Count) like the first column of USCM.

Because the contents of USCM are constant in a given graph
G, we can prepare USCM for just one time unless the graph G is
updated. The complexity of building USCM is n × (|E | + |E |).

3.2 USCM-Based Estimating of Evaluation Cost

In this section, we propose cost functions for estimating the evalua-
tion cost of an RPQ,Q(R), in three main cases of regular expression

R: (1) a simple regular expression with concatenation operator; (2)
a regular expression with alternation operator; and (3) a regular ex-
pression with bounded Kleene operator. We also discuss estimating
the evaluation cost of highly complex RPQs.

3.2.1 An RPQ with concatenation. In our approach, the evalua-
tion cost of an RPQ is estimated by splitting the original RPQ into
multiple unit-subqueries and gathering the cost of each successive
unit-subqueries.

Let us assume that there is an RPQ, Q(R), where R = a0a1..an
as a string that is concatenated by (n + 1) labels ai ∈ Σ. Then, Q(R)
can be split intoQ(a0a1),Q(a1a2), ..,Q(an−1an), and the evaluation
cost for Q(R) is defined as summation of cost of each successive
unit-subquery like Equation 1.

CQ (R) =
n−1∑
i=0

CQ (aiai+1) =
n−1∑
i=0

Ci (1)

For C0, the evaluation starts from the edge labeled with a0 and
tries to find the path to a1. Accordingly,C0 composed of the cost of
finding the next search nodes and the cost of searching a1. That is,
C0 = δ (a0) + ξ (a0), where δ (ai) is the number of edges given label
ai which is the Count value for the first column of USCM and ξ (ai)
is the cost ofQ(ai_) which is the value of the last column of USCM.

For Ci , where i > 0, we do not consider the searching cost for
finding edges with label ai , because this cost is already considered
in the previous stepCi−1. So, forCi , we only consider the searching
cost for finding edges with label ai+1. However, this cost is affected
by the number of search nodes which are found in the previous
step(s). To consider this effect, we can calculate the probability
of how many edges labeled with ai related to the unit subquery
Q(ai−1ai) are found among the all the edges labeled with ai , and
apply to the searching cost to edges labeled with ai+1 from edges
labeled with ai . That is, Ci can be represented like Equation 2,
where μ(ai−1,ai) is the cost of unit-subquery Q(ai−1ai), which is
the first value of each cell of USCM.

Ci =
μ(a0,a1)
δ (a1)

× · · · ×
μ(ai−1,ai)

δ (ai)
× ξ (ai) (2)

Example 3: Suppose that we have a graph G as described in
Example 1. An actual situation as the following: for a marketing
strategy in a company, the board of directors wants to introduce
products through all paths from the supervisors to people who are
married to friends of the employees in that company. A regular
expression R which represents that situation is R = supervisor ◦
f riend ◦married . Here, we do not focus on evaluating this query

95

Estimating the Evaluation Cost of Regular PathQueries on Large Graphs SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam

but estimate the evaluation cost ofQ(R). In this case, the evaluation
cost can be estimated as follows.

C0 = CQ (supervisor◦f r iend)
= δ (supervisor) + ξ (supervisor) = 2 + 6 = 8

C1 = CQ (f r iend◦marr ied)

=
μ(supervisor , f riend)

δ (f riend)
× ξ (f riend) = 2/4 × 8 = 4.

Thus, the total estimated cost is twelve. It is equal to the true cost of
evaluating Q(R) in the graph G by using automata-based approach.

3.2.2 An RPQ with alternation operator. We assume that an RPQ,
Q(R), is defined by a regular expression,

R = a0...ai−1(ai |ai+1)ai+2...an ,

where ai ∈ Σ. Herein, R has an alternation operator between ai and
ai+1. In this case, the originalQ(R) can be split into three subqueries
Q(a0...ai−1),Q(ai−1(ai |ai+1)ai+2), and Q(ai+2...an). For the sub-
queries Q(a0...ai−1) and Q(ai+2...an), we can estimate their cost
by using our method in Section 3.2.1.

For evaluatingQ(ai−1(ai |ai+1)ai+2), we need to consider two dif-
ferent steps:Q(ai−1(ai |ai+1)) andQ((ai |ai+1)ai+2). In the first step,
Q(ai−1(ai |ai+1)) can be considered by two subqueries Q(ai−1ai)
and Q(ai−1ai+1). Here, evaluating both of these subqueries starts
from edges labeled with ai−1, and during a single evaluation time
we can traverse the edges labeled with ai as well as ai+1. So, the cost
ofQ(ai−1(ai |ai+1)) can be estimated by the cost of eitherQ(ai−1ai)
orQ(ai−1ai+1). On the other hands,Q((ai |ai+1)ai+2) can be decom-
posed into Q(aiai+2) and Q(ai+1ai+2), and the evaluation process
of these subqueries is different to each other. So, CA, the estimated
cost ofQ(ai−1(ai |ai+1)ai+2), can be estimated by the summation of
the costs of Q(ai−1ai),Q(aiai+2), and Q(ai+1ai+2) like Equation 3.

CA = CQ (ai−1ai) +CQ (aiai+2) +CQ (ai+1ai+2) (3)

Equation 3 can be represented as an explicit formula by two
cases as the following:

• i = 1

CA = δ (a0) + ξ (a0) +
μ(a0,a1)
δ (a1)

ξ (a1) +
μ(a0,a2)
δ (a2)

ξ (a2) (4)

• i > 1

CA =
μ(a0,a1)
δ (a1)

× · · · ×
μ(ai−2,ai−1)

δ (ai−1)
×(

ξ (ai−1) +
μ(ai−1,ai)

δ (ai)
ξ (ai) +

μ(ai−1,ai+1)
δ (ai+1)

ξ (ai+1)
) (5)

Example 4: We illustrate our idea of estimating evaluation cost
in case of query has alternation operator by an example. In which,
the regular expression R = supervisor ◦ (colleaдue ∪ f riend) ◦
married . By using Equation 4, the evaluation cost of Q(R) can be

estimated as follows.

CQ (R) = CA = δ (supervisor) + ξ (supervisor)

+
μ(supervisor , colleaдue)

δ (colleaдue)
ξ (colleaдue)

+
μ(supervisor , f riend)

δ (f riend)
ξ (f riend)

= 2 + 6 + (1/1) × 2 + (2/4) × 8 = 14

In this case, the total estimated cost is fourteen. It equals the true
cost of evaluating Q(R) in the graph G by using automata-based
approach as we mentioned in Example 2.

3.2.3 An RPQ with bounded Kleene operator. Let us assume that
there is an RPQ, Q(R), where

R = a0a1...ak−1a
[i, j]
k

ak+1...an

with a bounded Kleene operator. To estimate the cost of Q(R), we
can split this query into three subqueries including

Q(a0...ak−1),Q(ak−1a
[i, j]
k

ak+1), and Q(ak+1...an),
then the evaluation cost for Q(R) is defined as summation of cost
of each subquery. We can estimate the costs of the subqueries
Q(a0...ak−1) and Q(ak+1...an) by using the proposed method de-

scribed in Section 3.2.1. The subquery Q(ak−1a
[i, j]
k

ak+1) is com-
posed of the unit-subqueries: a Q(ak−1ak), (j − 1) times Q(akak),
and a Q(akak+1). So, the estimated cost of Q(ak−1a

[i, j]
k

ak+1), CK ,
is defined as shown in Equation 6.

CK =
μ(a0,a1)
δ (a1)

× · · · ×
μ(ak−1,ak)

δ (ak)

(
1 +

μ(ak ,ak)
δ (ak)

+
μ(ak ,ak)
δ (ak)

×
μ(ak ,ak)
δ (ak)

+ · · ·
)
ξ (ak)

(6)

Letω =
μ(ak ,ak)
δ (ak)

, ∀ω �1, the estimated cost,CK , can be formalized

as follows.

CK =
μ(a0,a1)
δ (a1)

× · · · ×
μ(ak−1,ak)

δ (ak)
×
ω j − 1

ω − 1
ξ (ak) (7)

Equation 7 shows that the cost of evaluating an RPQ is not
depended on lower bound (i) of Kleene operator, but depends on
upper bound (j) of Kleene operator. That is, the high value of j will
take a high evaluation cost of Q(R).

Example 5: In this example, we will estimate the evaluation cost
of RPQ, Q(R), with R = supervisor ◦ f riend[1,3] ◦married . In this
case, CQ (R) = C0 + CK , with C0 = δ (supervisor) + ξ (supervisor)

= 2 + 6 = 8; and CK =
μ(suppervisor , f riend)

δ (f riend)
×
ω3 − 1

ω − 1
ξ (f riend),

where ω =
μ(f riend, f riend)

δ (f riend)
= 2/4 = 0.5. So, CK = 2/4 ×

(
0.53 −

1)/(0.5− 1)
)
× 8 = 7. Finally, we haveCQ (R) = 8+ 7 = 15. It is close

to true cost, sixteen, of evaluating Q(R) on graph G.

3.2.4 Estimating Highly Complex RPQs. Our approach is not
only effective with simple RPQs but also highly complex RPQs such
as the query with a regular expression of the form R ◦ S[i, j] ◦T or

R◦
(
S[i, j] ◦T

)[x,y]
◦U , where R, S,T , andU are regular expressions,

and i, j,x , and y are natural numbers, in which i < j and x < y. To

96

SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam Van-Quyet et al.

Figure 2: Comparison of the true cost and the estimated cost.

estimate the cost of a complex RPQ, we first decompose such query
into the queries containing at least one of three cases of operators
as described in Section 3.2. We then use USCM to estimate the
cost for decomposed queries. For example, an RPQ, Q(R), with R =

supervisor ◦(colleaдue∪ f riend)[1,2] ◦married can be decomposed
into two queries:
(1) supervisor ◦ colleaдue ◦ (colleaдue ∪ f riend) ◦married and
(2) supervisor ◦ f riend ◦ (colleaдue ∪ f riend) ◦married .
It is not difficult to estimate the evaluation cost of these queries by
using our proposed as presented above.

4 EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our proposed approach, we con-
ducted two main experiments: the first one is to compare our es-
timated cost with the true cost which is the number of traversed
edges during evaluation RPQs by using automata-based approach,
and the other one is to compare our USCM-based approach with
the automata-based approach (AUT) [11] and the threshold-rare
label based approach (TRL) [16] in the aspect of the response time
of parallel RPQs evaluation on large graphs.

4.1 Evaluation Settings

Environments. Our experiments were conducted on a personal
computer which has 3.5 GHz Intel Core i3, 4 CPU cores, and 8.0GB
of RAM. All algorithms are implemented in Java.

Data and Queries set. We adopted a real graph from a research
on biology (called Alibaba) and the synthetic graphs for the evalua-
tion.

We used Alibaba graph and the queries set given by previous
research [16]. The graph is a network of protein-protein interactions

which is used regularly in biology systems, for instance, to discover
protein functions and pathways in biological processes [29]. This
graph has 52.050 nodes, 340.775 edges, and 649 labels. We analyzed
10.000 queries in the queries set and found the following properties.
The queries set has around 87% proportion of having simple RPQs,
3% proportion of having nested RPQs without recursive modifiers,
and 10% proportion of having nested RPQs with recursive modifiers.
For setting the queries set to be the same between our approach and
the others, we replaced the modifiers (*, +, ?) by a fixed bounded
recursion from 1 to 5.

We used Gephi [3] to create the synthetic graphs with varying
number of nodes and number of edges (for more details, see Table 2
and Table 3). We used 15 distinct labels to annotate edges for these
graphs. The occurrence of labels follows the Zipfian distribution.
Then, we generated randomly 1,000 RPQs with various lengths
between 6 and 12. This queries set has about 5% proportion of
having the alternation and 30% proportion of having the bounded
Kleene operator with bounded recursion in the fixed range from 1
to 5.

Algorithms. To evaluate the accuracy of our estimationmethod,
we reimplemented AUT approach to measure the true cost, and
measure the estimated cost by implementing our proposed method.
For each query in queries set, the closeness between the estimated

cost, ei , and the true cost, ti , is calculated by the fraction
ei
ti

in the

case of ei ≤ ti , otherwise it is
ti
ei

.

In order to show the efficiency of our proposed method, we
implemented a case study which the estimated cost is used to split
original RPQs into smaller subqueries in an efficient way, then
we evaluated them in parallel and combined partial answers. In

97

Estimating the Evaluation Cost of Regular PathQueries on Large Graphs SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam

Table 2: Accuracy evaluation with varying graph sizes

|V| |E| Average Degree Accuracy

2,000 38,142 19 87.62

4,000 76,860 19 88.43

8,000 152,245 19 89.02

16,000 306,806 19 88.70

32,000 615,047 19 89.18

Table 3: Accuracy evaluation with varying average degrees

|V| |E| Average Degree Accuracy

16,000 63,540 4 75.12

16,000 128,297 8 81.52

16,000 255,578 16 88.00

16,000 513,225 32 89.06

16,000 1,024,183 64 88.45

general, the response time of parallel query processing consists
of three major metrics: query splitting time, searching time, and
combination time of partial answers. Therein, the searching time
takes most of the response time in case of evaluation of RPQs on
large graphs. Therefore, it is more relevant here to focus on reducing
the searching time. In practice, the searching time depends on the
evaluation of subquery which has the highest cost. Thus, we can
improve the performance evaluation of an RPQ by spitting it into a
few subqueries satisfying the evaluation cost of the RPQ is minimal.
To do this, our proposed idea can be used as the following.

Step 1: Find all N possible sets of subqueries, S = {S1, S2, .., SN },
for a given RPQ. For example, we can find three sets of subqueries
for an RPQ,Q(R), with R = knows◦supervisor ◦colleaдue◦married
as follows.
S1 = {knows ◦ supervisor ; supervisor ◦ colleaдue ◦married}
S2 = {knows ◦ supervisor ◦ colleaдue; colleaдue ◦married}
S3 = {knows◦supervisor ; supervisor◦colleaдue ; colleaдue◦married}

Step 2: For each set of subqueries Si , 1 ≤ i ≤ N , estimate the
evaluation cost of Si , which is defined as maximum of evaluation
cost of the subqueries belong to Si .

Step 3: Compare the evaluation cost of all sets of subqueries in S
to find out the set Si which has the minimum evaluation cost.

Note that, in Step 1 above, we find all of the possible combina-
tion of sequenced labels, and it takes polynomial time. Here, we
consider only the labels as the split labels if it is not at the position
of the labels with bounded Kleene operator or inside a bracket
of an alternation operator. After finding the set of subqueries in
Step 3, each subquery is evaluated on different CPU in parallel by
using automata-based approach, and the results are gathered for
the answer of the original RPQ.

We also reimplemented AUT approach and the threshold rare
label based approach [16] to compare their response time with our
USCM-based approach.

Figure 3: Comparing the response time of parallel RPQs eval-

uation on large graphs.

4.2 Experimental Results

Exp-1: Accuracy of our estimation method

In order to evaluate the accuracy of our estimation method, we
first used Alibaba graph and a synthetic graph with 16,000 nodes
and 306,806 edges, and the queries sets are described above. The
results show that our estimation method obtained high accuracy:
around 85% in the case of Alibaba graph and 89% in case of the
synthetic graph. As an example, Figure 2 illustrated a comparison
of the estimated cost and the true cost of 30 random queries on each
dataset. We observed that the estimated cost is close to the true
cost, excepts some queries with high cost caused by the bounded
Kleene operators.

Next, we evaluate the accuracy with varied graph size (|V| + |E|).
We generated synthetic graphs by varying the size and average
degree of the graphs. In directed graphs, the average degree is

defined by the fraction
|E |
|V |

. In the first case, we scale graph size

from around 40K to 640K nodes and edges, but we keep the same
average degree for the graphs. As the results shown in Table 2,
our estimation method obtained high accuracy at most 89% for
all varied size of the graphs. In another case, we generated five
synthetic graphs by fixing the number of nodes |V| = 16K and
varying the number of edges |E| from 64K to 1.0M. Consequently,
the average degree of the graphs is varied from 4 to 64. We observed
that the estimation accuracy for the graphs having average degree
greater or equals than 16, which is mostly around 89%, are higher
than those in the cases of average degree of 4 and 8 (75.12% and
81.52%, respectively). The results are reasonable because the higher
average degree of the graph is, the higher probability of a label
connected to anyone else, which helps to increase the estimation
accuracy of our method, is.

Exp-2: Efficiency ofUSCM-based parallel RPQs evaluation

We implemented our algorithm for parallel RPQs evaluation as
described in Section 4.1. To ensure the parallel evaluation of split
subqueries, the split subqueries are evaluated on different CPU and
the results are gathered for the answer of an RPQ. To measure the
response time, we get the timestamp difference between issuing an
RPQ and getting the answer of an RPQ. That is, the response time

98

SoICT ’17, December 7–8, 2017, Nha Trang City, Viet Nam Van-Quyet et al.

of USCM-based approach includes the time for splitting the RPQ
and combining partial answers. Figure 3 illustrated the average
response times of three different approaches. We observed that our
USCM-based parallel RPQs evaluation outperforms AUT. That is,
using estimated cost of RPQ is necessary to reduce the evaluation
cost of RPQs in parallel. We also observed that in the case of Alibaba
graph, our approach reduced the average response time around 45%
comparing to TRL; meanwhile, in the case of the synthetic graph,
the reduction is 120%.

Summary. From the experimental results, we find the following.
(1) Our estimation method obtains high accuracy and scales well
with the size of graphs. (2) The estimation accuracy on the graphs
with a high average degree (e.g., greater or equals than 16) is higher
than smaller one. (3) Our proposed method is efficient when it is
applied to parallel RPQs evaluation on large graphs.

5 CONCLUSIONS AND FUTUREWORK

We proposed a novel approach of estimating the evaluation cost of
RPQs on large graphs. By exploiting graph schema and characters
of regular path queries, we defined an Unit-Subquery Cost Ma-
trix (USCM) which consists of all possible unit-subqueries of every
RPQs. According to USCM, we formalized estimating the evalua-
tion cost of a given RPQ. Our approach is not only effective with
simple RPQs but also highly complex RPQs. Moreover, we proved
the efficiency of our approach through a case study which the esti-
mated cost is used to split an original RPQ into smaller subqueries
by an efficient way for parallel evaluation. Experimental results
illustrated our method can estimate evaluation cost for RPQs with
high accuracy approximately 87% in average, and USCM-based ap-
proach outperforms traditional ones in the aspect of parallel RPQs
evaluation.

We envision several directions of our work, one of them is ex-
tending the estimation of the evaluation cost for highly complex
RPQs with respect to unbounded recursion. Beside that, motivated
by the absence of benchmarks devoted to RPQs, we want to develop
a benchmark for estimating cost as well as evaluating RPQs. More-
over, we will focus on how to apply this approach for solving RPQ
problems in various fields such as transportation analysis under
disaster situations and social network analysis for recommendation
systems.

ACKNOWLEDGMENTS

This research was supported by the MSIP (Ministry of Science, ICT
and Future Planning), Korea, under the ITRC (Information Technol-
ogy Research Center) support program (IITP-2017-2016-0-00314)
supervised by the IITP (Institute for Information & communications
Technology Promotion). This research was supported by Basic Sci-
ence Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2017R1A2B4012559).

REFERENCES
[1] Pablo Barceló, Leonid Libkin, AnthonyWLin, and Peter TWood. 2012. Expressive

languages for path queries over graph-structured data. ACM Transactions on
Database Systems (TODS) 37, 4 (2012), 31.

[2] Pablo Barceló Baeza. 2013. Querying graph databases. In Proceedings of the 32nd
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems. ACM,
175–188.

[3] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. 2009. Gephi: an
open source software for exploring and manipulating networks. ICWSM 8 (2009),
361–362.

[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
1999. Rewriting of regular expressions and regular path queries. In Proceedings of
the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 194–204.

[5] Mariano P Consens andAlberto OMendelzon. 1990. GraphLog: a visual formalism
for real life recursion. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 404–416.

[6] Isabel F Cruz, Alberto O Mendelzon, and Peter T Wood. 1987. A graphical query
language supporting recursion. In ACM SIGMOD Record, Vol. 16. ACM, 323–330.

[7] Alan Davoust and Babak Esfandiari. 2016. Processing Regular Path Queries on
Arbitrarily Distributed Data. In OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems". Springer, 844–861.

[8] Wenfei Fan, Xin Wang, and Yinghui Wu. 2012. Performance guarantees for
distributed reachability queries. Proceedings of the VLDB Endowment 5, 11 (2012),
1304–1316.

[9] Mary Fernandez and Dan Suciu. 1998. Optimizing regular path expressions
using graph schemas. In Data Engineering, 1998. Proceedings., 14th International
Conference on. IEEE, 14–23.

[10] George HL Fletcher, Jeroen Peters, and Alexandra Poulovassilis. 2016. Efficient
regular path query evaluation using path indexes. (2016).

[11] Roy Goldman and Jennifer Widom. 1997. DataGuides: Enabling Query Formu-
lation and Optimization in Semistructured Databases. In VLDB’97, Proceedings
of 23rd International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece. 436–445. http://www.vldb.org/conf/1997/P436.PDF

[12] Gösta Grahne and Alex Thomo. 2000. An optimization technique for answering
regular path queries. In WebDB (Selected Papers). Springer, 215–225.

[13] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2006. Automata theory,
languages, and computation. International Edition 24 (2006).

[14] Ioannis Konstas, Vassilios Stathopoulos, and Joemon M Jose. 2009. On social
networks and collaborative recommendation. In Proceedings of the 32nd interna-
tional ACM SIGIR conference on Research and development in information retrieval.
ACM, 195–202.

[15] André Koschmieder. 2010. Cost-Based Optimization of Regular Path Queries on
Large Graphs. Grundlagen von Datenbanken 581 (2010).

[16] André Koschmieder and Ulf Leser. 2012. Regular path queries on large graphs.
In Scientific and Statistical Database Management. Springer, 177–194.

[17] Donald Kossmann. 2000. The state of the art in distributed query processing.
ACM Computing Surveys (CSUR) 32, 4 (2000), 422–469.

[18] Leonid Libkin and Domagoj Vrgoč. 2012. Regular path queries on graphs with
data. In Proceedings of the 15th International Conference on Database Theory. ACM,
74–85.

[19] Alberto O Mendelzon and Peter T Wood. 1995. Finding regular simple paths in
graph databases. SIAM J. Comput. 24, 6 (1995), 1235–1258.

[20] Quyet Nguyen-Van, Le-Duc Tung, and Zhenjiang Hu. 2013. Minimizing data
transfers for regular reachability queries on distributed graphs. In Proceedings
of the Fourth Symposium on Information and Communication Technology. ACM,
325–334.

[21] Jacob Scott, Trey Ideker, Richard M Karp, and Roded Sharan. 2006. Efficient
algorithms for detecting signaling pathways in protein interaction networks.
Journal of Computational Biology 13, 2 (2006), 133–144.

[22] Dan Suciu. 2002. Distributed query evaluation on semistructured data. ACM
Transactions on Database Systems (TODS) 27, 1 (2002), 1–62.

[23] Silke Trißl. 2007. Cost-based optimization of graph queries. In Proceedings of the
SIGMOD/PODS PhD Workshop on Innovative Database Research (IDAR).

[24] Silke Trißl and Ulf Leser. 2010. Estimating Result Size and Execution Times for
Graph Queries.. In ADBIS (Local Proceedings). 11–20.

[25] Le-Duc Tung, Quyet Nguyen-Van, and Zhenjiang Hu. 2013. Efficient query
evaluation on distributed graphs with Hadoop environment. In Proceedings of
the Fourth Symposium on Information and Communication Technology. ACM,
311–319.

[26] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2016. Query planning for eval-
uating SPARQL property paths. In Proceedings of the 2016 International Conference
on Management of Data. ACM, 1875–1889.

[27] Jaewon Yang and Jure Leskovec. 2011. Patterns of temporal variation in online
media. In Proceedings of the fourth ACM international conference on Web search
and data mining. ACM, 177–186.

[28] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[29] Javad Zahiri, Joseph Hannon Bozorgmehr, and Ali Masoudi-Nejad. 2013. Com-
putational prediction of protein–protein interaction networks: algorithms and
resources. Current genomics 14, 6 (2013), 397–414.

99

